远景能源副总裁王晓宇:风机外观没有明显变化时,到底风机的核心技术是什么?

能见App 2018年9月8日 371

由中国能源研究会指导,盐城市人民政府与远景科技集团共同发起的“2018盐城绿色智慧能源大会”,于2018年9月6日-7日在江苏省盐城市举办。

本次大会主题为“创新、绿色、智慧、共享”,致力于打造智慧能源领域全球权威会议。大会特邀智慧能源领域40+国内外权威机构、500+智慧能源企业、50+合作媒体、1000+参会嘉宾齐聚盐城,共同探讨智慧能源现状与未来。能见App全程直播本次大会。

在海上风电发展及产业链分场会议上,远景能源副总裁兼首席产品技术官王晓宇发表了主旨演讲。

以下为演讲实录:

王晓宇:风机行业已经有了几十年的历史,这几十年风机从概念上没有什么大的变化,唯一变的就是它的功率越来越大,风轮直径越来越大,特别是在海上。风机外观没有明显变化的时候,到底风机的核心技术是什么?

这么一个大型设备在风流的影响下,整个振动载荷是非常复杂的。追根溯源看一下风机的设计,我们需要知道每一个关键节点的时序,知道仿真动态的特点。但现在风电行业所做的风机设计的仿真,实际上是通过随机过程增加一些概率的特征,模拟出整个风轮平面的无数个质点,每个质点按三个方向运动,运动的轨迹和规律是随机过程产生的。这样一个听起来有点不靠谱的东西,经过一系列复杂的微分计算得到载荷,拿到载荷以后结构工程师进行艰苦的设计。

追根溯源想一想,所有的输入是从哪里来的?来源于一些粗略的观测加上大量随机过程的数学模拟,这种数学模拟在以前的历史上有很多的经验公式,但这些经验公式来自于30米、40米、60米直径的风轮。20年前做出来的经验公式,是不是还适用于今天140米、160米、170米直径的风轮,我想大家可能心里都没底。结构是非常复杂的事情,我想提醒大家,这些仿真的时序是怎么产生的?是通过随机的种子,通过相关性的概率推演得到的一个windcube,一个风的正方体,一切都是围绕这个进行的。

另一方面,一个优秀的结构工程师只要知道了准确的受力,可以让设计出来的结构要运行20年就不会运行21年或19.9年,这是通过人类几十年,几百年几千年做钢结构的经验得来的,通过实验得到的历史疲劳。那为什么还会经常发现疲劳损坏呢?因为你根本不知道输入,当不知道输入的时候,实际上你很难了解你的结构究竟能活多少年,这就是我们说的可靠性。

设想一下,假如我们知道了输入,所有的多体动力学模型将不再是一个空中楼阁。如果我们能预见到输入,感知到实体模型随时在多体动力学微分方程输出节点上、真实的每时每刻的载荷训练,这时候会不会有一个革命性的变革。这时的风机虽然长的还是和别的风机一样,就像武林高手和普通人长的一样。但当外载过来的时候,应该如何把载荷卸在什么地方,用多少发电量换多少载荷,智能风机全都了然于胸。如果把一个真正运行的风机了然于胸,所有动态特性永远不超过包络和边界,这才是解决风机可靠性最本质的出路。但是大家想一想有多少实践,多少实验,多少技术使我们的风机应该做成那样?

从多体动力学来看,插在海上像电风扇一样的风机,运行起来是一个多自由度的复杂模型,这个复杂模型不能仅仅存在于我们的脑海里,电脑里,其实也可以存在风机真实的运行过程中。这样一个旋转的机械其实不是像大家看到那么轻松的在转,它的传动、扭矩、弯矩、塔筒的前后摆动,要运行20年不间歇。所以这是真正工程的挑战,这是真正结构的挑战。

这些结构和工程的挑战最后靠什么来解决?靠智能化的控制系统来解决。蹂躏我们风机的风长得特别诡异,特别是在有尾流的情况、复杂地形地貌的情况。这些诡异的风使得看起来平静的风轮前面的风流其实是波诡云谲的、上下左右随着时间会发生巨大的变化。这些变化和我们通过马尔克夫矩阵、通过随机过程产生的风的理论的质点群之间的关联性,没有人能够证实。

回到实践,最后你会发现风电在理论上用随机过程构造的理论函数指导风机设计已经很多年,应该改变了。风机应该变成能够和外界动态感知和交互的机组,变成一个永远知道会活多少年的机组,在受到伤害时能做出反应的机组。

不智能的风机要么就多加材料,搞得无比强壮。要是弱一点受到伤害时你就不知道,等到知道的时候就是残胳膊断腿了,所以未来的风机一定要加上眼睛、耳朵,有大脑会思考。我知道行业内有很多在市面上可以采购到的激光雷达,不仅昂贵而且不能直接整合到风机智能化的设计里面去。首先为什么要加雷达?我需要能够感知真实的风流,第二什么样的雷达才是真正适应风机控制的雷达呢?

在一个风轮平面上,其实风的分布形式远远不是测风塔那一个点,有大量不同的组成风的湍流的变化,大小、左右、上下都不一样。

我们看到右图传统的很昂贵的激光测风,一个激光头打出去是要花钱的,看看左边的屏幕你可以想象一下,多少个激光头打出去才能够复原这样的一个花里胡哨的风轮平面。传统的左右各打一个,但远远不够,风轮平面像几个足球场那么大。那该怎么办?下面是远景给出的解决方案:既想知道整个风轮的平面又不想花很多钱,只需要一副激光头。

这是远景从光学组件到DSB电路都是自己研发,自己量产的一款雷达,结合远景自己的轮毂,通过一个激光头却可以借助风轮的旋转扫描100多个风轮平面上的点,这也是远景独有的专利技术。

通过这样的方式用相对低廉的价格取得了整个风轮平面100多个点的采样信息,获得立体空间风速的采样。这个其实已经在我们的选配包里面,价格比外面的价格便宜很多。有很多人问远景能不能把这个卖给他们做代理,我说没法卖,这是和我的软件系统、控制系统整合在一起的,买过去也没有用。大家可以看到,下面是一个真实的数据。

在一个非常复杂的风电场,橘红色是真真实实激光雷达传感器不断获取的,随着时间推移每一个截面扫描出来的所有点拉成一条直线,可以看出风速是差别很大的。今天时间关系就不继续往下讲更细节的技术问题,但是大家要知道感知风就能够提前做动作,就能够规避掉很多载荷,而不是傻乎乎硬抗。

第二个除了知道风之外,其实风机有两个非常重要的部件,传统的塔筒不就是钢结构吗?传统的叶片不就是玻璃钢做出来的一个实体吗?为什么我们把它叫做智能塔筒和叶片?

什么叫智能叶片,就是在任何时间点,任何方位角能够知道叶片的形变,当我知道叶片的形变的时候就能够知道风轮扫过塔筒时候的整个距离,这个安全距离非常重要。第二点在叶片根部有传感设备震动设备位移设备,我可以根据理论模型,复现出整个叶根三个方向上的弯矩。风机所有受力的来源就是来自三个叶根。只要你能够复原三个叶根的受力,就摆脱了用随机过程所复现的理论概念的随机风,每天都可以真真实实感受到由于风带来的载荷,有了眼睛之后还有了体认,知道胳膊受了多大力,肩膀有多疼。所以在这个过程中其实我们的图象处理技术可以整个还原。叶片上涂装一些特殊涂料,在真实现场通过计算机模拟,计算机机器视觉的方式,白天晚上都能探测到整个叶片的动态形状。

左边是真实的人看到的视觉图象,这个视觉图象还有一个耳朵,左下方是叶片划过时声音的音频处理信号。这样叶片表面的损伤都可以在音频信号处理过程中找到异常点,及早处理,不会等到叶片已经出现巨大问题的时候才发现。右边机器视觉把图像通过机器处理之后就变成一个维度的线,我就可以不再依赖于理论就能真实知道叶片真实运行过程当中的变化。这种刚性特征我在做出厂实验的时候理论模型都可以校验的,知道了模型结构和刚性特征、监测出动态形变的时候,风轮受到的所有信息都可以还原。现在可能还原一部分,但就像同一台特斯拉自动导航系统不断升级。当有了这么多传感之后不断探索,买了远景今天的风机,三年后远景的算法依然可以帮助提升。

通过高精度惯导技术可以非常精确的还原塔筒位移,对于钢结构而言,可以非常清晰的测量出刚性,知道动态静态位移可以知道塔筒基础的沉降、随时的变形量。知道塔筒推力损失值的时候可以还原出齿轮箱,轴承等很多地方的受力值,意味着塔筒不再麻木的承受伤害,随时随地知道承受了多少负担,在有伤害之前就会做相应的举动。

实际上有这么多传感技术每天都在运行、每天积累数据的时候,这些数据最后进到云端的时候你还可以处理大量的数据。因为当叶片运行所有数据被积累下来之后,在云端会有大量的APP,每天能够观测到叶根累积的疲劳损伤。很多海上、陆上平坦复杂的地形,都是同一个风机,安全系数都是按照同一款理论模型做出来的。同样的基因生出来的孩子受着不同的折磨,有的受伤轻,有的受伤重,在云端你能看到最被受折磨的,可以提前去照顾他,也能看到还有好多孩子养尊处优。智能风机可以作为独立的武林高手,同时还能够看到成百上千个风机所处的生存状态。

(根据速记整理,未经发言嘉宾审核)

海上风电 / 王晓宇 / 远景能源 / 智慧能源 / 特斯拉 查看更多
资讯

芬兰伊尔马塔尔海上项目波的尼亚环评计划启动

伊尔马塔尔最大的海上风电项目博蒂尼亚(Bothnia)的环境影响评估(EIA)项目已经启动,并进入咨询阶段。 该项目位于芬兰专属经济区(EEZ)内,分为 Bothnia 和 Bothnia West 两个子区域。 在开发过程中,该公司对两个区域进行了优化,从而缩小了面积,其中 Bothnia 面积约为原来的一半,Bothnia West 面积缩小了约 40%。两个区域的总面积接近 1,200 平方

资讯

巴斯夫将收购 Vattenfall 德国 Nordlicht 近海农场 49% 的股份

Vattenfall已签署收购协议,将其Nordlicht 1号和2号风电场49%的股权出售给巴斯夫。 该项目区位于德国北海博尔库姆岛以北 85 公里处,由两个独立的场址组成:980 兆瓦的 Nordlicht 1 和 630 兆瓦的 Nordlicht 2。两个场址的建设预计将于 2026 年开始。风电场将于 2028 年投入运营,届时预计年发电量将达到 6 太瓦时。 Vattenfall公司负

资讯

成功下线!东方电气大功率海上风电再添新成员

4月20日,由东方电气风电股份有限公司研制,拥有完全自主知识产权的18兆瓦半直驱大功率海上风电机组首台样机在福建省福清市东方电气风电(福建)有限公司顺利下线并发运。 18兆瓦半直驱海上风电机组是东方风电针对海上平价和竞价需求推出的机组,可减少风场机位数量和运维吊装成本,大幅降低风场建设成本,为业主带来更好的经济收益。 该机组风轮直径260米,单台机组每年可输出7200万度清洁电能,可节约标准煤2.

资讯

根据《通货膨胀削减法案》,LS C&S 获得 9,900 万美元的投资税收抵免

LS Cable System(LS CS)子公司LS GreenLink USA根据美国能源部(DOE)颁布的《通货膨胀削减法案》第48C条获得了9900万美元的投资税收抵免。 该公司计划在美国建造一座生产高压海底电力电缆的工厂。 "我们很荣幸能源部选择LS GreenLink获得48C投资税收抵免,"LS CS的Daniel Ko说。"能源部的支持将帮助LS GreenLink满足全球对海底电

资讯

2023年中国风电整机商吊装容量排名公布,金风、远景、运达占据前三!

今日(4月19日),中国可再生能源学会风能专业委员会正式发布《2023年中国风电吊装容量统计简报》。2023年,全国(除港、澳、台地区外)新增装机14187台,容量7937万千瓦,同比增长59.3%;其中,陆上风电新增装机容量7219万千瓦,占全部新增装机容量的91%,海上风电新增装机容量718.3万千瓦,占全部新增装机容量的9%。截至2023年底,累计装机超过19.5万台,共计47460万千瓦,

资讯

纽约征求物流招标书,宣布为 NY5 征求建议书

纽约州宣布,2 亿美元的支持性制造和物流 RFP 现已开放,以支持该州国内海上风电供应链的基础设施投资。 此外,还将发布一份RFI,为纽约州第五个海上风电项目招标(NY5)的开发提供信息,并设计一个协调的3亿美元RFP,重点关注主要组件海上风电供应链投资。根据2023年RFI收集的行业反馈,NYSERDA的竞争性供应链开发招标正在寻求2级至4级基础设施和制造设施的提案。供应链招标书的投标者将被要求

资讯

中广核1.4GW海上风电项目启动招标

4月19日,中广核电子商务平台发布《中广核新能源2024年第1批可研集中采购(广东区域)招标公告》。 公告显示,此次招标为中广核新能源广东汕尾红海湾三500MW海上风电项目、中广核新能源广东江门川岛一400MW海上风电项目、中广核新能源广东阳江三山岛五500MW海上风电项目可行性研究及专题报告集中采购。 本项目不划分标段,三个项目集中招标、按照项目报价、集中评标、按照项目分别签订合同。授标原则:综

资讯

辽宁庄河海上风电场发电量创历史新高

今年一季度,三峡能源辽宁庄河海上风电场聚集能源保供、强化精益运维,全面提升设备可利用率,发电量达2.26亿千瓦时,同比增长8%,创历史新高。 庄河海上风电运维团队加强系统隐患排查,严格执行岗位有职责、作业有程序、操作有标准、过程有记录的行为管控体系,有效防范和坚决杜绝各类事故发生。注重设备维护的制度化、规范化和专业化,建立了完善的设备维护管理体系、详细的设备维护标准和操作流程,确保每一次定期检修、

资讯

25台16MW机组!电气风电中标400MW海上风电项目

近日,中国电建华东院华能玉环2号海上风电项目EPC总承包工程400MW(16MW*25)风力发电机组(含塔筒五年整机维护)采购项目成交公示,规模共计400MW,电气风电中标。

资讯

多米尼克能源公司推出符合《琼斯法案》的海上风力涡轮机安装船

多米尼克能源公司(Dominion Energy)的卡里布迪斯号(Charybdis)是美国第一艘符合《琼斯法案》的海上风力涡轮机安装船,该船已从陆地下水。 为了实现这一目标,船体的焊接和四条支腿及相关顶升系统的调试工作已经完成。 "Charybdis不仅对CVOW至关重要,而且对美国东海岸海上风电行业的发展也至关重要,它为海上风力涡轮机的安装提供了本土解决方案,是持续发展国内供应链的关键,"多米